Multi-Scale Low-Entropy Method for Optimizing the Processing Parameters during Automated Fiber Placement

نویسندگان

  • Zhenyu Han
  • Shouzheng Sun
  • Hongya Fu
  • Yunzhong Fu
چکیده

Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro-meso-scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy-enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy-enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Automated Estimation of Effective Parameters of Complex Auditory Brainstem Response: Adaptive Processing based on Correntropy Concept

Objectives: Automated Auditory Brainstem Responses (ABR) peak detection is a novel technique to facilitate the measurement of neural synchrony along the auditory pathway through the brainstem. Analyzing the location of the peaks in these signals and the time interval between them may be utilized either for analyzing the hearing process or detecting peripheral and central lesions in the human he...

متن کامل

Structural Health Monitoring and Processing of Composites Using Photonic Sensing Technology

The increasing use of composite materials in many advanced structures brings with it a need to establish inspection and monitoring regimes to ensure structural integrity and safe operation throughout the service life. This results in the fast-growing composite industry searching for a technologically and economically feasible structural health-monitoring method to identify and assess defects/cr...

متن کامل

Optimizing of Steel Fiber Reinforced Concrete Mix Design

Cementitious matrices are the fragile materials that possess a low tensile strength. The addition of fibers randomly distributed in these matrices improves their resistance to cracking, substantially. However, the incorporation of fibers into a plain concrete disrupts the granular skeleton and quickly causes problems of mixing as a result of the loss of mixture workability that will be translat...

متن کامل

Cortical Correspondence with Probabilistic Fiber Connectivity

This paper presents a novel method of optimizing point-based correspondence among populations of human cortical surfaces by combining structural cues with probabilistic connectivity maps. The proposed method establishes a tradeoff between an even sampling of the cortical surfaces (a low surface entropy) and the similarity of corresponding points across the population (a low ensemble entropy). T...

متن کامل

Application of Image Processing for Investigating the Effect of Nanozeolite and Nanosponge on Flesh Firmness of Cold Stored Cantaloupe

Digital image processing is an emerging tool to predict fruit quality; therefore present study was carried out to develop an image processing technique for investigating the storage life of cantaloupe. Potassium permanganate (KMnO4) impregnated materials were used to prolong the postharvest life of cantaloupe fruit and the effects of these treatments were evaluated by 3 image textural features ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017